Netzwerkbildung und interdisziplinärer Wissenstransfer
Alumni - Interdisziplinäre Projekte
© ジンジャー塚原 - Adobe Stock

Mecha­ni­sche Metamaterialien

Dr. Claudio Findei­sen – Hector Fellow Peter Gumbsch
Dr. Muamer Kadic – Hector Fellow Martin Wegener

Im Gegen­satz zu klassi­schen Materia­lien hängen die Eigen­schaf­ten von Metama­te­ria­lien von deren spezi­el­ler Mikro­struk­tur ab. Neue Herstel­lungs­ver­fah­ren erlau­ben die Erzeu­gung von 3D-Metama­te­ria­lien mit Mikro­struk­tu­ren auf der Mikro­me­ter-Ebene. In diesem Projekt ging es darum, das Design von neuen mecha­ni­schen Metama­te­ria­lien zu erforschen.

Betei­ligt waren die Hector Fellows Peter Gumbsch und Martin Wegener gemein­sam mit dem HFA Postdok­to­ran­den Dr. Muamer Kadic (Karls­ru­her Insti­tut für Techno­lo­gie, Insti­tut für Angewandte Physik) und dem HFA Dokto­rand Claudio Findei­sen (Karls­ru­her Insti­tut für Techno­lo­gie, Insti­tut für Angewandte Materialien).

In contrast to classic materi­als, the proper­ties of metama­te­ri­als result from their speci­fic micro­st­ruc­ture rather than their atomistic proper­ties. New produc­tion methods, such as direct laser writing, allow for the produc­tion of such 3D metama­te­ri­als with micro­st­ruc­tures in the range of micro­me­ters, which is impos­si­ble with standard fabri­ca­tion methods. In this colla­bo­ra­tion project, the young scien­tists inves­ti­gate the design of new classes of metama­te­ri­als. They present two classes of materi­als to protect from linear vibra­ti­ons using cloaking devices and to absorb energy via inner insta­bi­li­ties of micro-lattices.

 

An elasto-mecha­ni­cal “unfee­la­bi­lity” cloak made of penta­mode metamaterials

Metama­te­rial-based cloaks make objects that differ from their surroun­dings appear just like their surroun­dings. To date, cloaking has been demons­tra­ted experi­ment­ally in many fields of research. However, cloaking in the appar­ently simple case of three-dimen­sio­nal solid mecha­nics is more deman­ding.
Inspi­red by invisi­ble core-shell nanopar­ti­cles in optics, the scien­tists design an appro­xi­mate elasto-mecha­ni­cal core-shell “unfee­la­bi­lity” cloak based on penta­mode metama­te­ri­als (see Figure 1). The resul­ting three-dimen­sio­nal polymer micro­st­ruc­tures with macro­scopic overall volume are fabri­ca­ted by rapid dip-in direct laser writing optical litho­gra­phy. The resear­chers perform quasi-static experi­ments and map the displa­ce­ment fields by autocor­re­la­tion-based analy­sis of recor­ded movies.

Mechanical Metamaterial

Figure 1: An elasto-mecha­ni­cal unfee­la­bi­lity cloak made of pentamode

Tailo­red buckling micro-latti­ces as reusable light-weight shock absorbers

Struc­tures and materi­als absor­bing mecha­ni­cal (shock) energy commonly exploit either visco­elasti­city or destruc­tive modifi­ca­ti­ons. Based on a class of uniaxial light-weight geometri­cally nonlinear mecha­ni­cal micro-latti­ces and using buckling of inner elements, they achieve either a sequence of snap-ins follo­wed by irrever­si­ble hyste­re­tic – yet repeat­a­ble – self recovery or, alter­na­tively, multi-stabi­lity enabling programm­a­ble behavior. Proof-of-principle experi­ments on three-dimen­sio­nal polymer micro-struc­tures are done (see Figure 2).

Meta Shock Absorber

Figure 2: A shock absor­ber using tailo­red buckling micro-lattices

Dr. Claudio Findeisen

Dokto­rand

Dr. Muamer Kadic

Postdok­to­rand
   

Publi­ka­tio­nen aus dem Projekt

  1. Kern C., Schus­ter V., Kadic M., and Wegener M., Phys. Rev. Appl., DOI: 10.1103/PhysRevApplied.7.044001 (2017).
  2. Qu J., Kadic M., Naber A., and Wegener M., Scien­ti­fic Reports, DOI: 10.1038/srep40643 (2017).
  3. Findei­sen C., Hohe J., Kadic M., and Gumbsch P., J Mech Phys Solids, DOI: 10.1016/j.jmps.2017.02.011 (2017).
  4. Kern C., Kadic M., and Wegener M., Phys. Rev. Lett., DOI: 10.1103/PhysRevLett.118.016601 (2017).
  5. Frenzel T., Findei­sen C.Kadic M., Gumbsch P.Wegener M., Adv. Mater., DOI: 10.1002/adma.201600610 (2016).
  6. Schittny R., Niemeyer A., Mayer F., Naber A., Kadic M., and Wegener M., Laser Photo­nics Rev., DOI:10.1002/lpor.201500284 (2016).
  7. Kadic M., Bückmann T., Schittny R., and Wegener M., Phil. Trans. R. Soc. A, DOI: 10.1098/rsta.2014.0357 (2015).
  8. Kadic M., Schittny R., Bückmann T., Kern C., and Wegener M., Phys. Rev. X, DOI: 10.1103/PhysRevX.5.021030 (2015).
  9. Bückmann T., Kadic M., Schittny R., and Wegener M., PNAS, DOI: 10.1073/pnas.1501240112 (2015).
  10. Schittny R., Niemeyer A., Kadic M., Bückmann T., Naber A. and Wegener M., Optica, DOI: 10.1364/OPTICA.2.000084 (2015).
  11. Bückmann T., Kadic M., Schittny R., and Wegener M., Phys. Status Solidi B, DOI: 10.1002/pssb.201451698 (2015).
  12. Schittny R., Niemeyer A., Kadic M., Bückmann T., Naber A. and Wegener M., Optics Letters, DOI: 10.1364/OL.40.004202 (2015).
  13. Kern C., Kadic M., and Wegener M., Appl. Phys. Lett., DOI: 10.1063/1.4932046 (2015).
  14. Chris­ten­sen J., Kadic M., Kraft O. and Wegener M., MRS Commu­ni­ca­ti­ons, DOI: 10.1557/mrc.2015.51 (2015).
  15. Kadic M., Bückmann T., Schittny R., Gumbsch P., and Wegener M., Phys. Rev. Applied, DOI: 10.1103/PhysRevApplied.2.054007 (2014).
  16. Bückmann T., Thiel M., Kadic M., Schittny R., and Wegener M., Nat. Commun., DOI: 10.1038/ncomms5130 (2014).
  17. Schittny R., Kadic M., Bückmann T. and Wegener M., Science, DOI: 10.1126/science.1254524 (2014).
   

Betreut durch

Prof. Dr.

Karl Leo

Physik

Hector Fellow seit 2013Disziplinen Karl Leo

Prof. Dr.

Manfred Kappes

Chemie & Physik

Hector Fellow seit 2009Disziplinen Manfred Kappes

Prof. Dr.

Martin Wegener

Physik & Ingenieurwesen

Hector Fellow seit 2008Disziplinen Martin Wegener

Prof. Dr. Dr. h.c. mult.

Eberhart Zrenner

Medizin, Biolo­gie & Ingenieurwesen

Hector Fellow seit 2012Disziplinen Eberhart Zrenner