Netzwerkbildung und interdisziplinärer Wissenstransfer
Alumni - Promotionsprojekte
© Joannis Koepsell

Fermio­nic Quantum Gas Microscope

Joannis Koepsell – Hector Fellow Immanuel Bloch

Die mikro­sko­pi­sche Beschrei­bung einer Vielzahl exoti­scher Phäno­mene wie Magne­tis­mus oder Hochtem­pe­ra­tur­su­pra­lei­tung werfen immer noch Fragen auf. Dieses Projekt beschäf­tigt sich mit der Simula­tion dieser Phäno­mene mittels eines Quanten­gas­mi­kro­skops. Dabei werden ultra­ka­lte fermio­ni­sche Lithium Atome durch kontrol­lierte optische Licht­fel­der dazu gebracht, sich identisch zu Elektro­nen in einem Festkör­per zu verhal­ten. Durch die Verwen­dung einer hochauf­lö­sen­den Fluores­zenz­ab­bil­dung kann dabei das Verhal­ten jedes einzel­nen Atoms beobach­tet werden.

A rich variety of pheno­mena in solid state systems such as quantum magne­tism or high tempe­ra­ture super­con­duc­ti­vity still pose open questi­ons on parts of their micro­scopic explana­tion. Due to the comple­xity of these systems, the under­ly­ing quantum many-body dynamics is often not acces­si­ble to compu­ta­tio­nal simula­tion. Fermio­nic Quantum Gas Micro­scopes resolve the spin and density of single lattice sites in quantum gas experi­ments and repre­sent an novel platform to simulate conden­sed matter pheno­mena. In these experi­ments, atoms cooled to the quantum regime are manipu­la­ted by light fields to generate optical latti­ces and finally mimic solid state systems in which the inter­ac­ting fermio­nic atoms replace the electrons.

This project is carried out in the Lithium Quantum Gas Micro­scope experi­ment of Hector Fellow Immanuel Bloch. It aims at moving towards quantum simula­tion of the Fermi Hubbard model, topolo­gi­cal edge states in super­lat­ti­ces and the Fulde-Ferrell-Larkin-Ovchin­ni­kov phase in spin imbalan­ced systems. Our setup has the unique feature to simul­ta­ne­ously resolve spins, doubly occup­ied sites and holes at the same time. Recently, one of the first single site resol­ved images of fermio­nic atoms in optical latti­ces was reali­zed. A new super­lat­tice genera­tion will be imple­men­ted to reach lower entro­pies, incre­ase the system size and to reach higher energy scales.

RR Lyrae stars as tracers of substructure and Galactic archaeology

Single site resol­ved image of Lithium atoms in an optical lattice shown with an artis­tic view of the microscope

Joannis Koepsell

Ludwig-Maximi­li­ans-Univer­si­tät München
   

Betreut durch

Prof. Dr.

Immanuel Bloch

Physik

Hector Fellow seit 2012