Martin Wegener receives MOC Award
Japan Society of Applied Physics honors outstanding research on the fundamentals and applications of micro-optics
Japan Society of Applied Physics honors outstanding research on the fundamentals and applications of micro-optics
Despite extensive research in personalized medicine, promising personalized therapies still fail to translate into clinical practice. In my research project, I aim to construct a pathway model that predicts the effects of potential therapies by combining mechanistic modeling and experimental approaches to meet ideal criteria for facilitating the translation of research to patients.
Single magnetic molecules can be used as building blocks to construct new artificial spin systems which are interesting for future quantum devices. We use scanning tunneling microscopy (STM) combined with electron spin resonance (ESR) to construct and investigate such spin systems on a surface. This enables the study of fundamental spin properties on the atomic scale and exploring novel magnetic phenomena in multi-spin systems.
The Hector Fellow Academy calls for applications for the Hector Research Career Development Award 2023 The new application phase for the Hector Research Career Development Award has started. Ambitious scientists who aspire to a professorship are invited to submit...
Study on Mechanisms of SARS-CoV-2 Infections
Collaborating with the LV Prasad Eye institute, we investigate sight recovery individuals with a history of transient congenital blindness due to cataracts to unveil the neural mechanisms of sensitive periods in brain development. More specifically, we investigate higher cortical representations and whether and how they emerge if visual input arrives delayed e.g., not before mid-childhood. The present PhD project will focus on object representations and how they emerge in the interaction with other visual areas. We expect a better understanding of how early experience shapes adult brain connectivity.
Alzheimer’s disease (AD) has a multifactorial etiology which includes, among others, vascular dysfunction and aberrant neuroimmunity. We aim to investigate the gene ABI3 as a potential connection between these two facets of AD pathophysiology. Through transgenic murine models, and using a combination of biochemical, immunohistochemical, and in vivo imaging techniques, we will explore how the late-onset AD risk variant S209F ABI3 affects neurodegeneration, immune fitness, and vascular dynamics.
Rare genetic disorders lead to a failure to produce enough blood cells that are frequently fatal, seen most often among young children. These diseases are primarily monogenic, caused by the loss of function in a single gene. To investigate the effects of this loss of function, my project seeks to mimic it outside of the human body, specifically in human bone marrow organoids (BMOs). By studying BMOs, the aim is to identify critical factors contributing to bone marrow failure and ultimately use this information to develop new diagnostic methods.
Star clusters used to be considered to consist of stars that all formed simultaneously and with the same elemental abundances. The surprising discovery that these clusters contain multiple populations with characteristic abundance inhomogeneities remains an enigma. I will investigate whether rotational mixing is a plausible culprit, using massive emission-line stars as tracers of rapid rotation. Also, I will assess the validity of certain light elements as signatures of multiple populations.
DNA nanotubes are widely used as a mimic for cytoskeletal filaments in bottom-up synthetic biology. Using a synthetic starPEG construct that acts as a crosslinker, we succeed in bundling the few nanometer thick DNA nanotubes. In bulk they self-assemble into micron-scale rings. We achieve their contraction upon temperature increase or molecular depletion with crowing molecules such as dextran (in collaboration with Kierfeld group, TU Dortmund).