Creat­ing the Future
Doctoral projects

Land Subsi­dence & Ground­wa­ter Salin­iza­tion in the Mekong Delta

Felix Dörr – Hector Fellow Franz Nestmann

Land subsidence and groundwater salinization are existence-threatening environmental changes in the Mekong Delta (MD). Their origin and process dynamics are not fully understood yet. By innovative measurement technology, field/lab investigations and numeric modeling, a comprehensive understanding of the processes is developed and the effect of potential countermeasures can be examined. The elaborated knowledge is the basis for sustainable water concepts in the MD and other delta areas worldwide.

© Felix Dörr

Mitochon­dr­ial DNA mutational landscape in human T cells

Yu-Hsin Hsieh – Hector RCD Awardee Leif Ludwig

T cell differentiation and function are tightly regulated by numerous cellular processes, including cellular metabolism, which can be significantly affected by mitochondrial DNA (mtDNA) mutations. However, the impact of mtDNA mutational burden on T cell differentiation and functional heterogeneity remains poorly understood. Thus, this project aims to characterize the mtDNA mutational landscape and its functional consequences in human T cells using single-cell multi-omics approaches.

© Yu-Hsin Hsieh

High-through­put Virus Discov­ery in Next Gener­a­tion Sequenc­ing Data

Franziska Klingler – Hector Fellow Ralf Bartenschlager

Anelloviruses are a diverse group of ubiquitous viruses infecting humans and vertebrates. Their contribution to disease development remains elusive. We hypothesize that during lifelong, persistent infection disbalances in the viral community can drive onset and progression of disease, e.g. cancer. We aim at a thorough description of the viral spectrum present in healthy and diseased tissue by high-throughput screening of sequencing data and subsequent identification of viral variants correlated with pathogenesis.

© Franziska Klingler

Quantum simula­tion of strong inter­ac­tions of light and matter

Valentin Klüsener – Hector Fellow Immanuel Bloch

The central paradigm of quantum optics is the absorption and emission of radiation by quantum emitters. When the coupling between an emitter and its environment becomes strong, intriguing radiative properties can be engineered, such as directional emission patterns or strongly modified emission rates. This project aims at accessing such effects in a system of ultracold atoms in optical lattices where artificial emitters decay by emitting matter waves rather than optical radiation.

© Valentin Klüsener

Main group hetero­he­licenes for appli­ca­tions in organic electron­ics and catalysis

Jan Niedens – Hector RCD Awardee Agnieszka Nowak-Król

This project is focused on the synthesis of novel helically chiral compounds containing diarylborole, arsole and stibole units. The aim of this research is to obtain materials with improved optical and electronic properties by joining helical chromophores via boron as a spiro-atom. Additionally, helicenes containing arsenic and antimony could be used as ligands in asymmetric catalysis due to their higher stability towards oxidation, compared to the common phosphine analogues.

© Jan Niedens

Defin­ing novel resilience pathways in rare monogenic disorders

Daniel Petersheim - Hector Fellow Christoph Klein

In the EU alone, approximately 30 million people are affected by a rare disease, many of them children. Most of the 6,000 to 8,000 rare diseases known to date are caused by the altered function of a single gene (Boycott&Ardigó, 2018). This project under the supervision of Prof. Christoph Klein aims to develop innovative strategies for precision medicine in rare diseases by (i) re-wiring aberrant molecular networks for therapeutic purposes and (ii) identifying novel “druggable” targets using CRISPR-Cas9-mediated genome-wide screens.

© Daniel Petersheim

Helic­ity Preserv­ing Cavity for Circu­lar Dichro­ism Enhancement

Philip Scott – Hector Fellow Martin Wegener

Most modern drugs are made up of one handedness of a chiral molecule (one enantiomer). In many cases, depending on the handedness of the enantiomer, the drug could have either beneficial or harmful effects, thus is it desirable to be able to detect the handedness. Circular dichroism (CD) spectroscopy can differentiate between the handedness due to differential absorption of circularly polarised light but suffers from weak signals; therefore, a method that can enhance the signal is desired.

© J. Feis et al., Phys. Rev. Lett.

Realiz­ing a Quantum Proces­sor based on Stron­tium Rydberg Atoms

Maximilian Ammenwerth – Hector Fellow Immanuel Bloch

In this project, an innovative quantum gas microscope is developed that makes use of optical tweezers to rearrange neutral strontium atoms into configurable and defect-free patterns. This allows for rapid initialization of the system and serves as a starting point for the analog simulation of quantum many-body systems and as a qubit register for digital quantum computing. Exploiting long-range Rydberg interactions enables the simulation of spin models and the implementation of quantum logic gates.

Realisierung eines Quantenprozessors auf der Basis von Strontium-Rydberg-Atomen© Maximilian Ammenwerth

The inves­ti­ga­tion of the forma­tion- and purpose of black matter in anaer­o­bic methane oxidis­ers and methanogens

Stian Torset – Hector Fellow Antje Boetius

The project investigates the structure, purpose, and mechanisms of origin for amorphous carbon formed by methanogenic and methane-oxidizing archaea. I will use advanced biophysical, computational, and genetic tools to determine the genes, proteins and structures, including the molecular mechanisms involved in the formation of this carbon. Potential applications will be assessed. The project is supervised by Hector Fellow Antje Boetius.

© Stian Torset